Extending Baire-one functions on compact spaces

Olena Karlova

Chernivtsi National University

Let $B_1(X)$ be the collection of all Baire-one functions $f: X \to \mathbb{R}$ on a topological space X.

Let $B_1(X)$ be the collection of all Baire-one functions $f: X \to \mathbb{R}$ on a topological space X.

A subspace E of a topological space X is called

• B₁-embedded in X, if any function $f \in B_1(E)$ can be extended to a Baire-one function $g: X \to \mathbb{R}$;

Let $B_1(X)$ be the collection of all Baire-one functions $f: X \to \mathbb{R}$ on a topological space X.

A subspace E of a topological space X is called

- B₁-embedded in X, if any function $f \in B_1(E)$ can be extended to a Baire-one function $g: X \to \mathbb{R}$;
- \mathbb{B}_1^* -embedded in X, if any bounded function $f \in \mathbb{B}_1(E)$ can be extended to a Baire-one function $g: X \to \mathbb{R}$.

Theorem (O. Kalenda and J. Spurný, 2005)

Let E be a Lindelöf hereditarily Baire subset of a completely regular space X and $f: E \to \mathbb{R}$ be a Baire-one function. Then there exists a Baire-one function $g: X \to \mathbb{R}$ such that g = f on E.

Theorem (O. Kalenda and J. Spurný, 2005)

Let *E* be a Lindelöf hereditarily Baire subset of a completely regular space *X* and $f: E \to \mathbb{R}$ be a Baire-one function. Then there exists a Baire-one function $g: X \to \mathbb{R}$ such that g = f on *E*.

• if A and B are disjoint dense subsets of $E = \mathbb{Q} \cap [0, 1]$ such that $E = A \cup B$ and X = [0, 1] or $X = \beta E$, then the characteristic function $f = \chi_A : E \to \mathbb{R}$ can not be extended to a Baire-one function on X.

Question (O. Kalenda and J. Spurný, 2005)

Is any hereditarily Baire completely regular space X B₁-embedded in $\beta X?$

Let X be a topological space and $(\,Y,\,d)$ be a metric space. A map $f:X\to Y$ is called

• ε -fragmented for some $\varepsilon > 0$ if for every closed nonempty set $F \subseteq X$ there exists a nonempty relatively open set $U \subseteq F$ such that diam $f(U) < \varepsilon$;

Let X be a topological space and (Y, d) be a metric space. A map $f: X \to Y$ is called

 \checkmark ε -fragmented for some $\varepsilon > 0$ if for every closed nonempty set $F \subseteq X$ there exists a nonempty relatively open set $U \subseteq F$ such that diam $f(U) < \varepsilon$;

• fragmented if f is ε -fragmented for all $\varepsilon > 0$.

Proposition

Let X be a topological space, (Y, d) be a metric space and $\varepsilon > 0$. For a map $f: X \to Y$ the following conditions are equivalent:

- 1. f is ε -fragmented;
- 2. there exists a sequence $\mathscr{U} = (U_{\xi} : \xi \in [0, \alpha))$ in X of open sets such that
 - diam $f(U_{\xi+1} \setminus U_{\xi}) < \varepsilon$ for all $\xi \in [0, \alpha)$;
 - $\circ \ \emptyset = U_0 \subset U_1 \subset U_2 \subset \ldots;$
 - $U_{\gamma} = \bigcup_{\xi < \gamma} U_{\xi}$ for every limit ordinal $\gamma \in [0, \alpha)$.

An ε -fragmented map $f: X \to Y$ is

• functionally ε -fragmented if \mathscr{U} can be chosen such that every U_{ξ} is functionally open in X;

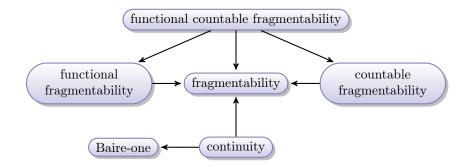
An ε -fragmented map $f: X \to Y$ is

- functionally ε -fragmented if \mathscr{U} can be chosen such that every U_{ξ} is functionally open in X;
- functionally ε -countably fragmented if \mathscr{U} can be chosen to be countable;

An ε -fragmented map $f: X \to Y$ is

- functionally ε -fragmented if \mathscr{U} can be chosen such that every U_{ξ} is functionally open in X;
- functionally ε -countably fragmented if \mathscr{U} can be chosen to be countable;
- functionally countably fragmented if f is functionally ε -countably fragmented for all $\varepsilon > 0$.

Functionally fragmented maps



Proposition

Let X be a topological space, $(\,Y,\,d)$ be a metric space, $\varepsilon>0$ and $f:X\to\,Y$ be a map. If

- Y is separable and f is continuous, or
- X is hereditarily Lindelöf and f is fragmented, or
- X is compact and $f \in B_1(X, Y)$,

then f is functionally countably fragmented.

Theorem (K., 2016)

Let X be a completely regular space. For a Baire-one function $f: X \to \mathbb{R}$ the following conditions are equivalent:

- *f* is functionally countably fragmented;
- f can be extended to a Baire-one function on βX .

Theorem (K., 2016)

Let X be a completely regular space. For a Baire-one function $f: X \to \mathbb{R}$ the following conditions are equivalent:

- *f* is functionally countably fragmented;
- f can be extended to a Baire-one function on βX .

Theorem (K. and V.Mykhaylyuk, 2016)

There exists a completely regular scattered (and hence hereditarily Baire) space X and a Baire-one function $f: X \to [0, 1]$ which can not be extended to a Baire-one function on βX .

Applications of extension theorem. B_1 -embedd B_1^* -embedding

Theorem (K., 2013)

Let X be a hereditarily Baire space and E be a perfectly normal Lindelöf subspace with a hereditary countable π -base. Then the following conditions are equivalent:

- $\bullet E \text{ is } B_1^*\text{-embedded in } X;$
- $\boldsymbol{2}$ E is B₁-embedded in X.

Applications of extension theorem. B_1 -embedd B_1^* -embedding

Corollary 1.

For a countable subspace E of a metrizable space X the following conditions are equivalent:

- $\bullet E \text{ is } B_1^*\text{-embedded in } X;$
- **2** E is G_{δ} in X.

Applications of extension theorem. B_1 -embedd B_1^* -embedding

Corollary 1.

For a countable subspace E of a metrizable space X the following conditions are equivalent:

- $\bullet E \text{ is } B_1^*\text{-embedded in } X;$
- $\mathbf{2} E$ is G_{δ} in X.

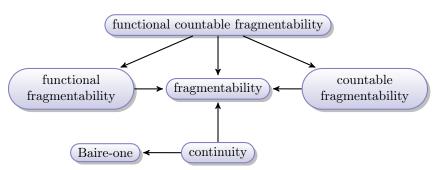
Corollary 2.

Any countable hereditarily irresolvable completely regular space X is B_1^* -embedded in βX and is not B_1 -embedded in βX .

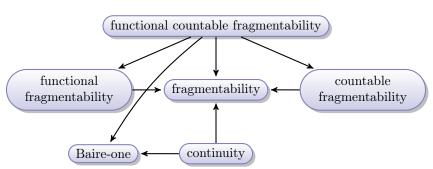
Corollary 3.

Every functionally countably fragmented function $f: X \to \mathbb{R}$ defined on a topological space X is Baire-one.

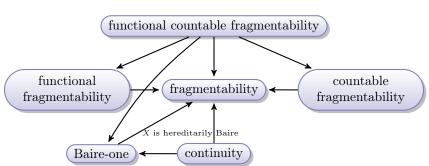
 $Y = \mathbb{R}$



 $Y = \mathbb{R}$

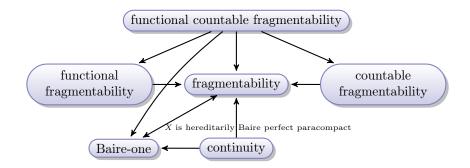


$$Y = \mathbb{R}$$



$$Y = \mathbb{R}$$

$$Y = \mathbb{R}$$



$$Y = \mathbb{R}$$

